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A novel heterogeneous network-
based method for drug response 
prediction in cancer cell lines
Fei Zhang1, Minghui Wang1,2, Jianing Xi   2, Jianghong Yang2 & Ao Li1,2

An enduring challenge in personalized medicine lies in selecting a suitable drug for each individual 
patient. Here we concentrate on predicting drug responses based on a cohort of genomic, chemical 
structure, and target information. Therefore, a recently study such as GDSC has provided an 
unprecedented opportunity to infer the potential relationships between cell line and drug. While 
existing approach rely primarily on regression, classification or multiple kernel learning to predict 
drug responses. Synthetic approach indicates drug target and protein-protein interaction could have 
the potential to improve the prediction performance of drug response. In this study, we propose a 
novel heterogeneous network-based method, named as HNMDRP, to accurately predict cell line-
drug associations through incorporating heterogeneity relationship among cell line, drug and target. 
Compared to previous study, HNMDRP can make good use of above heterogeneous information to 
predict drug responses. The validity of our method is verified not only by plotting the ROC curve, 
but also by predicting novel cell line-drug sensitive associations which have dependable literature 
evidences. This allows us possibly to suggest potential sensitive associations among cell lines and drugs. 
Matlab and R codes of HNMDRP can be found at following https://github.com/USTC-HIlab/HNMDRP.

Over the past 20 years, significant improvement in genomic profiling technologies have make it possible that 
personalized medicine become the fashion trend of future medical science1,2. In comparison with the paradigm of 
conventional symptoms-oriented drug discovery and development, personalized treatment makes use of tumor 
response and vulnerability to handle the expensive and limitations in clinical experiments. The major challenge 
in personalized prevention and treatment is the identification of biomarkers which is critical to understand the 
pathogenesis of given complex disease3. However, researchers are required to consider the time and cost effective-
ness of predictive biomarker in human or animal models as it is not feasible to test the clinical efficacy and toxicity 
of large populations of cancer patients with hundreds of drugs. High-throughput drug screening technologies 
enable many studies to conduct large-scale experiments on human cancer cell lines. For instance, two recent 
consortiums, GDSC4 (Genomics of Drug Sensitivity in Cancer) and CCLE5 (Cancer Cell Line Encyclopedia) have 
analyzed around 1500 cancer cell lines and their genomic profiles against 280 drugs. Both of two studies provide 
genome-wide data of multiple type of cancer cell lines and drug sensitivity data of established anticancer drugs 
against these cell lines.

For improving understanding of disease and potential personalized medicine, one burgeoning field of interest 
is the problem of drug response prediction6. So far many prediction methods have been developed to facilitate 
and speed up drug discovery7 and repositioning process. For example, Gupta et al. use genomic feature based 
model to predict anticancer drug responses and have achieved good results based on above dataset8. Dong et al. 
propose a SVM classification model to accurately predict drug sensitivity according to gene expression profile in 
the CCLE dataset and have attained good performance for several drugs9. Meanwhile, Geeleher et al. apply ridge 
regression model and use the same dataset to predict drug response and also obtain equally good performance10. 
This kind of approach underlines the use of cell line’s genomic information in drug response prediction. In addi-
tion, many studies begin to pay their attention to the use of heterogeneity relationships among cell line genomic 
alteration, cell line-drug sensitivity and drug chemical structure. For instance, Liu et al. develop a systematic 
algorithm to predict the anti-cancer drug response via combining both cell line genomic and compound structure 
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features11,12. Menden et al. propose a machine learning model to accurately predict cell line-drug sensitivities 
using both the cell line’s genomic features and the drug’s chemical structure properties13. And Ammad-Ud-Din 
et al. propose a kernelized Bayesian matrix factorization method (KBMF) to predict drug response by integrating 
the same dataset of cell line genomic and drug chemical properties14. Based on the same principle, Wang et al. 
propose a kernel function to correlate the heterogeneous pharmacogenomics information of both cell and drug, 
and then use SVM classifier to infer the cell line-drug associations15. And Zhang et al. construct a dual-layer net-
work between cell line and drug and use weighted model to efficiently predict anti-cancer drug response through 
incorporating similarity between cell line and drug16.

Despite aforementioned great works have achieved promising results, other factors contributing to predict 
cell line-drug associations lies in the fact drug-target and protein-protein interaction (PPI) information are often 
cooperated in drug discovery, which have been demonstrated in previous studies17–20. Recently, Stanfield et al. 
construct a heterogeneous network to compute network profiles for cell lines and drugs, then perform a random 
walk with restart to predict links between cell lines and drugs based on these profiles21. The authors show inte-
grating cell line mutation data, drug responses with PPI network can significantly improve its prediction perfor-
mance. Despite its effectiveness, drug-target interactions are not integrated into the heterogeneous network to 
compute network profiles and therefore may influence the prediction results.

Inspired by the above method, there is a strong incentive to combine genomic and compound information 
with drug-target and PPI interaction information to predict drug responses. Accordingly, we present a novel 
heterogeneous network-based method for drug response prediction, named HNMDRP, to efficiently predict 
cell line-drug associations by incorporating cell line genomic profile, drug chemical structure, drug-target and 
PPI information. We first introduce the similarity measure to construct this heterogeneous network model22 
by calculating Pearson correlation coefficient between cell line genomic profiles, drug chemical structures and 
target gene. Subsequently, we perform an information flow-based algorithm23 on this network and obtain the 
score of all cell line-drug pair, where the score is the prediction of drug response. In order to validate the effec-
tiveness of drug-target and PPI information in our cell line-drug-target heterogeneous network, we compare it 
with existing methods. To perform a proper evaluation on our novel heterogeneous network-based method, we 
implement leave-one-out cross validation (LOOCV) to demonstrate its superior performance compared with 
existing state-of-the-art methods: Zhang’s method16, Stanfield’s method21, DLNDRP24, SVMDRP. The com-
prehensive results show that our method achieves the best AUC values for most drugs. Besides, our method 
can retrieve the largest true cell line-drug sensitive associations when focusing on the top percent predicted 
cell-drug associations. We then use our HNMDRP method to find several novel potential sensitive associa-
tions according to high-ranking prediction results which are strongly supported by related literatures. These 
results provide convincing evidence of the good performance of HNMDRP as well as potential value in future 
biological experiments.

Results
Evaluation of prediction performance of HNMDRP.  In this work, leave-one-out cross validation25 
(LOOCV) is applied to evaluate the predictive performance of our HNMDRP method in predicting drug 
response between cell line and drug. At each step of LOOCV experiment26, consistent with previous studies26–28, 
we treat a sensitive association between a cell line and a drug as testing data by setting the value as 0 in the matrix 
Acd. The rest of all associations are treated as training data for model learning. But only the prediction score of 
testing data is extracted each time. This process is repeated until every sensitive association between cell line and 
drug is treated as testing data once. Actually, for each given drug, only those cell lines with known associations 
are ranked in descending order according to the prediction score of LOOCV experiment. Afterward, the receiver 
operating characteristic (ROC) curve is employed to show the predictive performance of our HNMDRP method 
and other methods by plotting true positive (sensitive) and false positive (resistant) at different cutoff points22. 
Here, true positive rate (TPR) represents the percentage of sensitive cases correctly labeled as positives, and false 
positive refers to the ratio of resistant cases incorrectly labeled as positive. At the same time, we also compare 
the predictive performance of our method when only removing each information that include drug’s 1-D and 
2-D structure information, PPI information, gene-gene correlation information and target similarity network 
information. The experimental results (as shown in supplementary Figure S4) show that all information are vital 
for drug response prediction, and PPI and gene-gene correlation information play relatively more important 
role than others. In addition, The computational complexity is mainly determined by equations (4) and (5) and 
are O(nm5l4) and O(n3m5l2), respectively. Considering the fact that the number of cell lines(n) and number of 
drugs(m) are relatively smaller than number of target genes(l), thus, the main contribution of computational 
complexity is the target gene nodes(l). Accordingly, the overall complexity of our model is O(n3m5l2).

Compared with existing methods.  In order to comprehensively assess the efficiency of our method 
on predicting drug responses, we compare HNMDRP method with state-of-the-art method: Zhang’s method, 
Stanfield’s method, DLNDRP and SVMDRP. Here, Zhang et al. propose a computational framework for the 
dual-layer integrated cell line-drug network to accurately predict tumor drug responses. And Stanfield’s method 
is performed on network profile which is computed by a large heterogeneous network to accurate and repro-
ducible classification of drug sensitive and resistance. DLNDRP is a heterogeneous graph based inference on a 
two-layer network which consist of only cell line nodes and drug nodes for drug response prediction. SVMDRP 
is implemented on cell line gene expression and drug sensitivity data for predicting drug response. We made 
comparison of these five methods as shown in Fig. 2 and Table 1. From the results of Fig. 2, we find that our 
method achieve better results than both Stanfield’s method and Zhang’s method. In addition, as shown in Table 1, 
we can see that the average AUC value of our HNMDRP method are 5.6% and 14.26% higher than DLNDRP and 
SVMDRP, respectively. The results of remaining drugs are listed in Supplementary Table S3. The highest AUC 
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value of 93.8% is obtained by drug SNX-2112 which also achieved good results using liquid chromatography 
method27. According to these results, we know that our method HNMDRP can predict drug responses more 
accurately than other state-of-the-art methods investigated here.

Tissue specific of cell line type.  Drug responses may have large differences in diverse tissues types. 
Therefore, we test whether our HNMDRP can achieve a good performance when considering different cell line 
tissue types. As shown in Fig. 3A, 19 tissue types of cancer cell line and the distribution of these types are obtained 
based on GDSC dataset. We find that the major tissue types are leukemia (acute myeloid leukemia and chronic 
lymphocytic leukemia), urogenital system (bladder cancer), Lung NSCLC (non-small cell lung carcinoma). They 
take up 8.3% (80), 10.4% (100), 11.3% (109) on all 962 cancer cell lines, respectively. In order to demonstrate the 
comparable predictive results of our proposed method in different tissue types, we examine the performance on 
predicting drug responses in above three types of tissue. As shown in Fig. 3B, the bar represents the area under the 
ROC curve for three tissue types. And the average AUC values are 0.6787, 0.5053, 0.5534, 0.5265 and 0.5324 for 
five methods HNMDRP, Zhang’s method, Stanfield’s method, DLNDRP and SVMDRP on leukemia, urogenital 
system and lung NSCLC. These results indicate that our HNMDRP method can also achieve consistent perfor-
mance on diverse tissue types. And the AUC values of the rest tissue types are listed in Supplementary Table S4. 
Furthermore, we only use the specific type of cell line to train our model and predict the drug responses based on 
these tissue types. The experimental results show that our method also achieve the best performance as shown in 
supplementary Figure S4.

Case studies.  It is known that the prediction results of false positive are usually suspicious in study of bio-
informatics28. In this work, our HNMDRP method has attained a good performance in predicting known cell 
line-drug associations when compared with other existing method. We need to validate the ability of retrieving 
true positive (sensitive) associations in the prediction results among five methods. Thus, in addition to the ROC 
curves, we also compare the numbers of correctly retrieved cell line-drug sensitive associations according to 
different percentiles29. As shown in Fig. 4, we take drug GSK2126458 as an example, which have 94 positives (sen-
sitive) and 808 negatives (resistant) associations, for each percentile p% (1%, 2%, 5%, 10% and 100%), we count 
the number of retrieved true positives among 962 cell lines based on the prediction results. And we can easily 
find that our HNMDRP method has little true positive predictions at percentiles 1% and 2%, but has significant 
more predictions at higher percentiles. These results indicate that HNMDRP method gives most of the known cell 
line-drug sensitive associations higher ranks and gives several unknown associations very high ranks.

Figure 1.  The overall workflow of our HNMDRP method. (A) Collecting known sensitive or resistant 
associations between cell lines and drugs. (B) Integrating heterogeneous information which includes cell line 
gene expression profile, drug chemical structure, drug-target and PPIs. (C) The schematic of our network 
model. Each sub-network is obtained to construct a comprehensive heterogeneous network. (D) Performing an 
information flow-based algorithm on the heterogeneous network.
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Computationally predicted results usually need experimental verification, but it has more difficulty and lim-
itation in practical implementation. Thus, similar to Wang et al.15, which find out novel sensitive associations 
based on the prediction score of cell line-drug pair with unknown associations in the database. To further test 
the ability of our HNMDRP method in predicting potential cell line-drug associations, we searched the top20 
ranked candidate prediction results of all cell line-drug pair which have unknown association with drugs in 
GDSC dataset. As shown in Table 2, we find literature evidences to support those cell line-drug pairs be novel 
potential sensitive associations. For instance, the cell type of cell line MHH-CALL-2 is B cell leukemia, and the 
literature evidence provided by Lucas et al. indicate that the drug MS-275 is the promising treatment programs 
on this cancer cell line which is ranked 4 in prediction results30. Meanwhile, Gobin, et al. suggest that drug 
NVP-BEZ235 is the potential therapeutic strategy on cell line CHSA0011 of cell type chondrosarcoma, which is 
ranked 10 among all cell lines31. For drug Belinostat and cell line AMO-1, the published work32 gives evidence 

Figure 2.  The ROC curve of drugs. Performance comparison of ROC curve among HNMDRP, Zhang’s 
method, Stanfield’s method, DLNDRP and SVMDRP method based on LOOCV.

Drug Method AUC

SNX2112

HNMDRP 0.9380

Zhang’s Method 0.9079

Stanfield’s Method 0.7523

DLNDRP 0.8896

SVMDRP 0.8938

CAY10603

HNMDRP 0.9341

Zhang’s Method 0.9103

Stanfield’s Method 0.7733

DLNDRP 0.8708

SVMDRP 0.8692

CP466722

HNMDRP 0.9143

Zhang’s Method 0.8669

Stanfield’s Method 0.7787

DLNDRP 0.8581

SVMDRP 0.5955

Table 1.  The results of leave-one-out cross validation: AUC value of several drugs.
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to clarify them be potential treatment in clinical trials. The remaining novel sensitive prediction results and lit-
erature evidences shown in Table 2 indicate that our HNMDRP method can accurately uncover novel sensitive 
associations between cancer cell line and drug, which provide a foundation of future experimental verification. 
Based on the above results, we can generally confirm that drug-target and PPI information are really important 
for drug response prediction.

Discussion and Conclusion
In this work, we propose a novel heterogeneous network-based method (HNMDRP) to predict the responses 
of cancer cell lines with multiple drugs based on experimentally IC50 values33 from the GDSC study4. Here, five 
sub-networks are constructed: (1) cell line similarity network, which is obtained by calculating Pcc values based 
on cell line gene expression profiles, (2) drug similarity network, which is obtained by calculating Pcc values 
based on drug chemical structures, (3) target similarity network, which is obtained by merging PPI information 
and correlational coefficient34 based on gene expression profile, (4) cell line-drug association network, which is 
obtained by log-normalized IC50 values from GDSC study, (5) drug-target interaction network, which is obtained 
by known compound molecular activities. Then a comprehensive heterogeneous network is constructed based 

Figure 3.  The performance of HNMDRP in diverse tissue types. (A) The distribution of each tissue types, 
including Lung, leukemia, breast, kidney and so on. (B) The AUC values of three major tissue types (leukemia, 
Lung NSCLC, urogenital system).

Figure 4.  The number of correctly retrieved cell line-drug associations at different percentiles among five 
methods for drug GSK2126458.

Drug Cell Cell type Drug usage Rank

MS-275 MHH-CALL-2 B_cell_leukemia B_cell_leukemia30 4

NVP-BEZ235 CHSA0011 Chondrosarcoma Chondrosarcoma31 10

Belinostat AMO-1 Haematopoietic_neoplasm Myeloma32 12

VX-680 ML-2 Acute_myeloid_leukaemia Myeloma53 17

Vorinostat CCF-STTG1 Glioma Glioma54 19

Roscovitine MKN28 Stomach Stomach55 20

Table 2.  The top20 predictions of cell line-drug pairs (unknown) computed by HNMDRP which have literature 
evidences be novel sensitive associations.
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on above sub-network. Our main contribution is integrated cell line gene expression profiles, drug chemical 
structure features, drug-target interactions and PPIs simultaneously. And we demonstrate that known drug-target 
interactions and PPIs are helpful for improving prediction performance of drug response. The validity of our 
method is not only supported by its effective in predicting known cell line-drug associations, but also in predict-
ing unknown cell line-drug associations which have dependable literature evidences. Another advantage of our 
method is the use of correlations among cell lines, drugs, targets. Thus, the huge dimensionality of cell line gene 
expression profile, drug chemical structure features are not seriously affecting the prediction results.

In addition, as people only concern about whether the specific cancer cell line is sensitive or resistant to a ther-
apy drug, but not what the exact response value is. In this work, we do not learn the exact response value which 
usually did in previous work16,35,36, but studying the binary classification problem (sensitive or resistant)9 of the 
drug response. From the results, we find that for most drugs, our HNMDRP method can obtain the best ROC 
curves, and the value of AUC is obtained from the corresponding curves. Comprehensive results show that our 
HNMDRP have achieved slightly better performance than existing state-of-the-art method in predicting drug 
responses.

Despite our method have achieved encouraging results, it cannot avoid the following limitations which we 
will extend and improve in future work. Firstly, the construction of cell line similarity network relied only on cell 
line’s genome-wide gene expression profile data, but not integrating cell line’s somatic mutation, copy number 
variation36,37 which could potentially influence the prediction performance based on our heterogeneous net-
work method22. Secondly, the construction of drug similarity network relied on drug’s 1-D and 2-D structural 
properties which might give sufficient features to represent a drug, but not integrating the 3-D structure features 
which may play a crucial role for certain drugs. Thirdly, construction of target similarity network relied only on 
correlational relationship and PPIs34, and target sequence information could be analyzed to characterize the sim-
ilarity among targets. Previous work indicate that sequence information is predictive in drug response15. Thus, 
if effectively incorporate these informative data resources into our model, the predictive performance may be 
further improved. With increasing data and theoretical support become available over time, we hope our method 
will have even better prediction results and potentially promote drug discovery process.

Materials and Methods
In this work, we use GDSC study4 as benchmark dataset which is downloaded from website (http://www.cancer-
rxgene.org/) by Wellcome Trust Sanger Institute. The dataset consist of 1001 cancer cell line and 265 tested drugs, 
and it also provide gene expression profiles which represent cell line genomic information and a series of contin-
uous IC50 values33 which represent the drug response measurement. In this work, we use 189 drugs which they 
have both chemical structure features and drug response data and 962 cell lines which they have both genomic 
profiles and drug response after data preprocessing. We also extract the interactions between 189 drugs and 243 
target genes based on the GDSC dataset. In order to incorporate PPIs into target similarity network, we download 
totally 4850628 PPIs data from STRING38 database and extract 396419 PPI interactions among available 3040 
genes which are associated with target genes39. We briefly describe the methods of calculating similarities and 
connections in the following section.

Cell line similarity network.  To construct cell line similarity network, firstly, we separate the baseline gene 
expression profile of cancer cell line based on genomic data from GDSC. Then we get 962 cell lines with 16383 
dimensional gene expression profiles (Fig. 1B left panel). Similar to previously study16, the Pearson correlation 
coefficient40 (Pcc) value of each cell line pair is calculated based on their gene expression profiles. Finally, as 
shown in Fig. 1C, we use a matrix SIMcc to represent cell line–cell line similarity network which is generated by 
the Pcc value of all cell line pairs.

Cell line-drug association network.  Initial cell line-drug associations are summarized by the 
log-normalized IC50 values from the GDSC database. We use the threshold provided by Iorio, et al.41 to classify 
these continues IC50 values into two classes: sensitive or resistant (Fig. 1A). Firstly, the threshold is distinct for 
each drug, and then the IC50 values higher than this threshold are defined as resistant, otherwise are defined as 
sensitive. Finally, we get overall associations including 17316 sensitive, 129815 resistant and 34687 unknown 
among 962 cell lines and 189 drugs. As shown in Fig. 1C, we use a matrix Acd to represent the association network 
between 962 cell lines and 189 drugs for further analysis.

Drug similarity network.  To construct drug-drug similarity network, firstly, we download drug’s chem-
ical structures from PubChem42 (https://www.ncbi.nlm.nih.gov/pccompound) of 189 drugs in which they all 
have chemical structure features. Then we extract the 1-D and 2-D structure properties (listed in Supplementary 
Table S1) of 189 drugs using PaDEL software43 program with default settings (Fig. 1B middle panel). The 1-D 
features include compositional molecular properties such as atom count, bond count and molecular weight. And 
2-D features consist of various quantitative properties of molecular topology, e.g., Kappa shape indices44, Randic45 
and Wiener indices46. Finally, we follow the work of Zhang et al.16, the Pcc value of each drug pair is calculated 
based on these features. As shown in Fig. 1C, we use a matrix SIMdd to represent drug-drug similarity network 
which is generated by the Pcc value of all drug pairs.

Drug-target interaction network.  In this work, our target information are collected from GDSC4 data-
base. First, we extract drug-target interactions among 189 drugs and 243 target genes which also exist in KEGG47 
drug database. And then, we extract 3040 available genes which are associated with target genes39 based on 
STRING database. Finally, as shown in Fig. 1C, the corresponding matrix Adt is generated to represent drug-target 
network among 189 drugs and 3040 genes.

http://www.cancerrxgene.org/
http://www.cancerrxgene.org/
https://www.ncbi.nlm.nih.gov/pccompound
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Target similarity network.  To construct target-target similarity network, two different gene-gene relation-
ship matrixes Wppi and Wcorr are generated (Fig. 1B right panel). Firstly, we use 0.4 confidence cut-off value48,49 
to extract 396419 PPIs between available genes based on STRING database38. Similar to the works50,51, the confi-
dence score of those PPIs are transformed to matrix Wppi(i, i). It is normalized as below:

= ∗Wppi Wppi i j Dppi i i Dppi j j( , )/ ( , ) ( , ) (1)

where D i i( , )ppi  is the sum of row i in W i i( , )ppi , Wppi i j( , ) is the normalized matrix which represent the weight of 
PPIs among available genes. Then we extract gene expression profiles of those available genes based on GDSC 
database. We follow previous study39 and calculate the Pcc value based on gene expression profiles. We use a 
matrix Wcorr to represent the weight of the correlational relationships which is generated by the above calculated 
Pcc value among available genes34. Finally, in order to deal with these two kinds of weighted matrix (Wcorr and 
Wppi) fairly, we treat them as below52:

= − − ∗ −SIM W Wppi1 (1 ) (1 ) (2)tt corr

As shown in Fig. 1C, we use a matrix SIMtt denote the target similarity network which is constructed by merg-
ing correlational relationship (Wcorr) and PPI (Wppi) information.

HNMDRP.  In this work, we propose a novel heterogeneous network-based method (HNMDRP) to efficiently 
predict cell line-drug associations by making good use of heterogeneous information of cell line gene expression 
profile, drug chemical structure feature, drug target interaction and PPIs information. The overall workflow of 
our method is summarized as Fig. 1. Firstly, the Pcc40 is a widely used measurement for identifying correlational 
relationships34. And it is defined as:

= ∑ − −

∑ − ∑ −
Pcc X X Y Y

X X Y Y

( )( )

( ) ( ) (3)2 2

where X and Y are the column vector of a node’s feature, X and Y are the mean value of each feature vector. Here, 
we take cell line similarity network as an example. The Pcc value together with the p-value (t-test) between this cell 
line and other cell lines are calculated. We take the procedure of previously study39 and use their criteria to choose 
the cell line pairs with absolute Pcc value which is ranked in top 50% among all cell line pairs and the p-value less 
than 0.01 as correlated, then use such Pcc value as the similarity score. Via this procedure, we can also obtain drug 
similarity network among 189 drugs. Then we introduce the similarity measure to construct a heterogeneous net-
work model by incorporating complex relationships which include cell line gene expression, drug chemical prop-
erty, drug-target and PPIs simultaneously. This comprehensive network H(C, D, T, and E) consists of five 
sub-networks, i.e. cell line-cell line similarity network, drug-drug similarity network, target-target similarity net-
work, cell line-drug association network and drug-target interaction network. These networks are connected by 
three types of nodes that are defined below: cancer cell line nodes, drug nodes and target gene nodes. Let CC = {c1, 
c2, c3…cn} denote the n cancer cell line nodes, DD = {d1, d2, d3…dm} denote the m drug nodes. These two types of 
node are transformed to similarity matrixes SIMcc and SIMdd. Here, in each intra-network, the element of SIM(i, j) 
in row i column j is the Pcc value between node i and node j. And TT = { …t t t t, , l1 2 3 } denote the l target gene 
nodes, the element of SIMtt is obtained by combining PPI and correlational relationships. In addition, we define the 
weight of the edges between nodes as CD = {cdij|i = 1, 2, 3…n, j = 1, 2, 3…m} and DT = {dtij|i = 1, 2, 3…m, j = 1, 2, 
3…l}. The matrix Acd (i, j) is the bipartite association network between cell lines and drugs. For instance, the edge 
(E) cdij is set as 1 if cell line i is sensitive to drug j, otherwise, resistant or unknown are set to be 0. And the matrix 
A i j( , )dt  is also a bipartite graph which is built according to the molecular activity between drugs and target genes. 
The edge dtij is set as 1 if a drug has its corresponding therapeutic target j, otherwise is set as 0. Finally, as Fig. 1C 
shows, a comprehensive heterogeneous network is constructed based on above five similarity and interaction net-
work. Subsequently, an information flow-based algorithm23 is performed on this synthetic network as below:

α α= × × × × + −+A A SIM A SIM A A( ) (1 ) (4)cd
k

cd
k

dd dt
k

tt dt
k T

cd
1 0

α α= × × × × + −+A A SIM A SIM A A( ) (1 ) (5)dt
k

dt
k T

cc cd
k

dd dt
k

dt
1 0

where the matrix Acd
0  and Adt

0  represent the initial cell line-drug associations and drug-target interactions, SIMcc, 
SIMdd and SIMtt are the similarity network among cell line, drug, and target gene, respectively, α is the decay 
factor in the range of 0 to 1. These two equations can be viewed as propagation algorithm across this comprehen-
sive network in the process of iteration23. The matrix +Acd

k 1 is the final drug response prediction score when the 
difference between +Acd

k 1 and Acd
k  satisfy a sum error with a threshold value of 1e-424. Since different data resources 

are merged together, proper normalization on matrixes are required to ensure the algorithm can converge23. And 
it is defined as follows:

=
∑ ∑= =

Norm v v
W v v

W v v W v v
( , )

( , )

( , ) ( , ) (6)
i j

i j

k
m

i k k
n

k j1 1

where W (vi, vj) is the matrixes of × × ×SIM A SIM A( )dd dt
k

tt dt
kT  or × × ×A SIM A SIM( )dt

kT
cc cd

k
dd  in the process 

of iteration, Norm(vi, vj) is the normalized matrix.
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